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Introduction 
 

Web application frameworks are built according to a number of design requirements.  

Frameworks should scale well, encourage developer productivity, be consistent 

programming best practices, and provide a secure platform for the application to stand 

on, to name a few. 

Of course, each web application framework emphasizes these and other requirements 

according to their own philosophy.  No framework can meet all of these requirements, so 

each framework is an expression of a sensible balance between them. 

In our experience, the most commonly-used web application frameworks choose 

performance and scalability as the first, most important design criteria.  Second, 

following closely after, is developer productivity.  A design that seeks to maximize these 

criteria must trade with other criteria, and security is often the loser. 

It is our opinion that today’s common high-performance, object-oriented web application 

frameworks encourage programming practices that make managing concurrent access to 

shared data difficult to accomplish securely.  Other classes of security flaws manifest 

themselves regularly when programming practices encourage those flaws; concurrency-

based flaws are no different.  It is our hope that with more awareness and better testing 

techniques that these flaws can be identified and eliminated. 

Concurrency 

Concurrency refers to the set of polices and mechanisms that enable one or more threads 

of execution to operate simultaneously
1
.  A number of attributes must be present in order 

to make this possible:   

 Infrastructure – True simultaneity occurs when multiple processors are available, 

whether they are on a single machine or distributed across a network.  The key is 

independent processors working cooperatively 

 Coordination – Operating systems provide coordination between concurrent 

threads of execution by providing synchronization primitives and handling 

resource management, including scheduling of execution.  Distributed systems 

require a similar architecture, often provided by operating systems, server 

applications, or dedicated transaction management services. 



 Programming Support – Most commonly-used programming languages provide 

similar models for managing threads of execution and synchronization.  These 

abstract the underlying complexity of services provided by underlying 

infrastructure and coordination facilities.  Though simplified, programming for 

concurrency remains a difficult art. 

 The Program – All of the other aspects can exist in a vacuum; they can be present 

and a programmer can still choose to execute their code in one long, sequential 

series of function calls.  In order to take advantage of the promise of concurrency, 

developers must design and implement their software with an understanding of 

the underlying complexity. 

The developer of a concurrent application has a difficult job:  They must understand the 

underlying complexity of a concurrent system, work with the limited APIs and 

technologies at their disposal to build safely-concurrent systems, and do so with enough 

time left to make a functional system.  

Concurrency Hazards 

Most literature for managing concurrency in the context of a particular language covers 

two areas:  making the application perform well and avoiding hazards.  Of course, a 

poorly-designed concurrency strategy will not deliver better performance or scalability.  

Though this could have Denial of Service impact, this paper will focus more on the 

security implications of concurrency hazards. 

The concurrency hazards of most interest for security practitioners are those that have to 

do with inadequate synchronization of data access.  As with most classes of security flaw, 

the goal of the attacker is to use flaws in the system to manipulate sensitive data.  

Inadequate or incorrect synchronization of data access and manipulation offers just that 

possibility. 

Concurrency Flaws 

Concurrency Flaws exist when a concurrency hazard, such as a race condition or 

deadlock, exists in an application and carries a security impact.   Such bugs may go 

unnoticed through functional testing, may only appear during boundary conditions, 

and/or may only be triggered during particularly heavy load.  These types of flaws will 

result in unpredictable behavior that is difficult or time intensive to identify and fix. 

Identifying Candidate Transactions 

Any data that is concurrently modified by multiple threads can provide a hazard for 

concurrency in a multithreaded environment.  In many cases resources can be shared 

harmlessly between threads.  However, resources which have conditional creation, 

modification, update requirements and are available for concurrent access should be 

considered a source of a potential flaw.  Identifying which assets are accessible 

concurrently and then further scrutinizing which are used for sensitive operations can 

identify potential sources of concurrency flaws. 



Once assets are identified, one must identify actions that manipulate those assets.  Any 

action which changes the state of candidate assets is a potential candidate for a 

concurrency flaw.  In particular, if the new state of the object prohibits the same action 

from occurring again or alters the conditions in which that action is allowed to occur. 

 Transferring Funds - In a trivial bank example where an account object contains a 

balance and transfers can take place only if the transfer is less than or equal to the 

balance, the balance information becomes the control.  If the entirety of the 

balance is transferred, then no additional transfers can take place.  However, if a 

previous state can be accessed (one with a nonzero balance), the transfer action is 

completely acceptable.  Thus a race condition exists in the transfer action and the 

update of the amount variable in the object. 

 Access Control Changes – Authorization policies define the abilities of 

authenticated users within a system.  Alterations to authorization polices can be 

susceptible to race conditions before changes are fully perceived by the system. 

 Digital Shrinkwrap- Situations where redemption of prizes, one-time use objects, 

time-limited use objects, on-first-use objects, etc. where the intention is to allow 

controlled use of the object may be vulnerable or susceptible to concurrency 

flaws. 

The increasing complexity of applications and the near-endless possibilities of managing 

sensitive assets introduce opportunities for concurrency flaws to manifest themselves.  

Although not all flaws will depend on controls, nor on the categories identified here, 

these offer an introduction to the potential hazards in concurrency transactions 

Concurrency Flaws in Web Applications 

Concurrency is particularly difficult for web application programmers.  The design model 

of a web application fundamentally is to allow as many concurrent users as possible and 

to respond to them as quickly as possible with information requested by those users.  The 

demands of web applications in fact are so great that a single system cannot sufficiently 

service all users and thus load balanced, distributed, multi-database systems are 

implemented to further satiate the demands for more information faster.   

Several forces act on web applications to encourage the presence of concurrency flaws: 

Developer Productivity 

The complexity of developing and deploying a multi-threaded multi-tiered web 

application has been reduced in modern web application frameworks, web servers and 

database systems.  This is both a great asset and a great risk.  When the bar of entry for 

deploying a complex system is lowered, there is additional risk that naïve 

implementations of web applications will lead to flaws.  Given the subtlety of 

concurrency flaws, it is likely that these would escape notice in such systems. 

 

 



Performance 

Protection against concurrency flaws requires the locking of assets that could be 

manipulated by multiple sources.  By default, most web application frameworks, 

databases, and operating systems attempt to process as many requests as quickly as 

possible.  The action of locking a resource implies that other threads of execution must 

wait for that resource before continuing, which in turn affects performance.  Thus, 

application design must consider shared resources:  the performance of an application is 

in opposition to the safe access of the resources it manages.   

Encapsulation 

One of the tenets of Object-Oriented Programming is data encapsulation. It encourages 

the engineering practice of abstracting low-level data and actions into higher-level 

objects.  This allows predictable actions to be performed, checked, and extended on data 

objects, which is a big win for code re-use and developer productivity. 

However, data encapsulation implies that the data is hidden from developers wishing to 

interact with the software at the object-level.  The purpose of encapsulation is, in fact, to 

free developers from such drudgery.  However, sensitive shared data must be protected, 

and a developer relying on an opaque object may not realize that sensitive data needs to 

be protected. 

Of course, Object-Oriented Programming can help manage concurrency.  Indeed, patterns 

for using the strengths of OOP to manage concurrent access within an object’s members 

are well-understood and widely-used.  However, encapsulation ends at the scope of the 

object, and functions that tie object methods into a single transaction need to manage 

synchronization.  For example, an Account object may provide perfect thread safety for 

each of its member variables when accessed through its defined methods.  However, a 

“TransferFunds” function that ties together multiple balance queries and updates on that 

object will be subject to concurrency flaws if it does not manage synchronization itself.  

In this particular case, one would hope that the need to synchronize access to the asset is 

obvious to the developer, though not all such cases are as clear.  When naïve developers 

take dependencies on opaque objects, the principle of encapsulation can be contrary to 

security. 

Inconsistency 

As consultants, we work with a large number of technologies over the course of a year.  

We find that web application frameworks are terribly inconsistent in what they consider 

thread-safe.  From a developer’s perspective, this means that moving from between 

frameworks requires a rather error-prone context switch.  They are likely to find that a 

reasonable assumption of thread safety is no longer the case when frameworks are 

modified or updated to the latest version.  The following examples illustrate the degree of 

variation: 



 ASP.Net – Requests for a given session are serialized, so session variables are 

thread-safe by default. 

 Java Servlets – HttpSession, including associated variables are not thread-safe 

 Struts 1.x – Actions are singletons and thus prone to thread-safety issues.  The 

documentation emphasizes the need for the application designer to develop action 

classes to be thread safe. 

 Struts 2.x – New instances of Actions are spawned for each request and are thread 

safe on a per-instance basis. 

Those are just the common variables used by web app frameworks.  Static classes, 

widely-scoped variables, and access to back end systems are all shared resources that 

need to be synchronized as well.   

Identifying Concurrency Flaws 
The identification of concurrency flaws is a challenging task, perhaps even more 

challenging than developing concurrent software.  To find a concurrency flaw, one must 

either understand that a piece of data happens to be shared by concurrent consumers and 

recognize the lack of synchronization between them or generate tests that stress a 

concurrent system and identify signs of flaws.   

It is assumed that, based on the previous section, one is able to identify sensitive 

transactions to be analyzed for flaws.  A general procedure for finding flaws in such 

transactions follows: 

White Box Analysis 

White Box analysis assumes that the reviewer has full access to system information, 

including specifications, code, and perhaps access to system engineers.  The techniques 

available during White Box analysis is a superset of the techniques available to Black 

Box reviewers, giving White Box reviewers the ability to pick and choose the most 

appropriate approach to finding flaws. 

Where possible, we suggest starting with the procedures discussed in the White Box 

analysis and augmenting them with those described in the Black Box analysis section. 

Identify Assets 

The first step is to identify the data associated with the sensitive transaction to be tested.  

These are the assets that the attacker wants to manipulate.  Such data could be stored in a 

number of places, in an HTTP session variable, in a database table, or accessed via a 

SOAP request, for example. 

Identify Consumers and Synchronization Mechanism 

Once assets have been identified, it is important to find all known consumers of the data 

and what, if any, mechanisms are used to synchronize access to it.  What constitutes 

“appropriate synchronization” depends primarily on the means by which the data is 

stored and accessed. 



For data stored in process memory, “consumers” might be defined as the set of threads 

that call a well-known set of functions to interact with said data.  In this case, one can use 

synchronization primitives provided by the operating system and/or programming 

environment to manage data access.  Code review should focus on ensuring that data 

access is accomplished through a common interface and that it provides appropriate 

levels of synchronization. 

For data stored in a database, “consumers” might be the set of front-end web servers in a 

farm together with a back-end management server.  In this case, one has to evaluate the 

distributed transaction processing mechanism used to synchronize access.  In the case of 

database access, one can rely on the inherent support for transactions available in most 

modern databases.  However, distributed transaction processing is a problem that 

stretches beyond database access.  For other types of systems, it is likely that similar, 

technology-specific, synchronization mechanisms will be used.  See the “Best Practices” 

section of this document for examples of such mechanisms.   

For both general classes, concurrent threads and concurrent machines, a combination of 

code review, documentation review, and interviews with system engineers would be the 

best means of identifying synchronization mechanisms. 

Verify Proper Synchronization 

Once all consumers of shared data have been identified along with their use of 

synchronization mechanisms, it is time to verify that the data in question is properly 

protected.  First, the nature of the data manipulation should be grouped into sensible 

transactions.   

For example, transferring funds from one bank account to another can be decomposed 

into several accesses of the key pieces of data – the balance on the source and destination 

account.  One must first read information about each account, perform validation of the 

transfer request, and then write information about each account – a total of four data 

accesses.  In order to correctly perform this transaction, each access must be performed in 

the scope of a single transaction.  Otherwise, modifications to the source or destination 

account balances performed mid-transfer could be overwritten. 

In order to pass review, it is necessary to verify not only that data access is properly 

synchronized through common access routines.  It must be synchronized properly 

through all known access routines.  Ideally, a common synchronization mechanism 

exposed through a common interface would be used for simplicity’s sake.  Where 

multiple synchronization methods are used, additional review should be performed to 

verify that each method provides equivalent protection to shared data. 

Black Box Analysis 

Black Box testing, generally speaking, means that a limited subset of information is 

available to the reviewer.  For the purposes of this paper, we will assume that the Black 

Box reviewer has access only to a system to test, not to code, binaries, or documentation 

of the system.  Black Box analysis necessarily takes a test-centric approach for this 

reason. 



Identifying concurrency flaws through testing is difficult.  A single test cannot 

conclusively identify the presence of a concurrency flaw.  Instead, systems must be 

rigorously tested under stress to ensure transactional integrity.  The following serves as a 

general testing method for finding such flaws: 

Build Test Cases 

Testing for concurrency flaws is similar to any other test:  you have to define the test 

steps, determine how tests can be measured for success or failure, and execute them. 

To build your tests, first use the guidance in the “Identifying Sensitive Transactions” 

section in this document to create a set of transactions to be tested.  For example, we 

might determine that the “Transfer Funds” feature of the bank described earlier is a good 

target for attack. 

Next, use a web proxy tool to capture the unique request or requests required to exercise 

each transaction and their expected outcome. In the same example, we might capture 

HTTP POST requests to the “TransferFunds.aspx” page so that they can be replayed 

during the test.  The expected behavior of such a transaction would be that the sum of the 

source and destination accounts always remains constant.  When this no longer holds, it is 

an indication that something is amiss in transaction processing. 

Perform Concurrency Tests 

The next step is to perform tests in an attempt to demonstrate the concurrency flaw.  

Often, simply demonstrating that directed testing can put the system into an inconsistent 

state is sufficient to demonstrate the presence of a flaw. 

There are strategies to consider when building a concurrency testing suite: 

First, one must consider where the asset might be managed.  If, for example, the asset is 

managed in a session variable, all tests should be performed using the same session 

identifier.  Similarly, if assets are available only across authenticated sessions, each 

request should be made using a different session identifier.  Finally, if the shared data is 

stored on a back-end server and accessed via one of several front-end servers, tests 

should target each of the front-end servers for maximum impact. 

Second, one must architect their tests to maximize the possibility of triggering the flaw.  

Concurrency attacks, by and large, occur with a certain probability.  One can often 

increase the probability by stressing the server.  This makes a certain amount of sense:  

by increasing the number of requests the server must serve, the server will likely increase 

the number of threads it manages.  The presence of additional threads, especially those 

performing the same transaction, increases the probability that one of those transactions 

will be interrupted mid-execution.   

In our experience, concurrency flaws can commonly be identified using a single, high-

performance client library for repeatedly executing requests that trigger transactions.   

We have created a freely-available open-source tool, SyncTest, to help perform this kind 

of testing. 



Validate Proper State 

Once the concurrency testing suite has completed, the final step is to verify that the 

presumed state is consistent with the expected result.  Per the “Transfer Funds” example 

above, one would verify that the sum of the balances for the source and destination 

accounts would be equal before and after the tests.   

Best Practices 
The concept of concurrency has been a research subject and practical consideration of 

developers for decades.  There has been a sizeable collection of books, papers, and how-

to documents published on the subject, including a number of books that focus on well-

tested patterns for addressing concurrency safely.  There is no single API or approach 

that fits every concurrency challenge, though there is a general tool that is effective in 

almost every case:  proper synchronization.  To attempt to enumerate an exhaustive list of 

proper techniques to apply to each challenge is impossible.  However, the following 

resources should be able to help any developer who seeks to address the class of flaws 

identified in this paper. 

System-Level Synchronization 

If the data that is managed is limited to a single application or to multiple applications 

running on a single system, one can use language and OS-level synchronization 

primitives to manage concurrent access to resources.   Most programming references for 

languages discuss APIs for managing threads and synchronization objects.  However, the 

cursory coverage given in such references is rarely sufficient to address more difficult 

problems in concurrency and synchronization.  For in-depth language or operating system 

references, we would recommend picking up a book focused on the subject to get a full 

understanding of the capabilities and limitations of the technology.  For a broader 

perspective that covers how to architect systems that both perform well and safely 

manage concurrency, we recommend Pattern-Oriented Software Architecture, Volume 2: 

Patterns for Concurrent and Networked Objects, referenced in the endnotes. 

Distributed Synchronization 

Synchronization across machines is a much more difficult matter.  As mentioned 

elsewhere in the paper, most common databases incorporate transaction support and can 

be used to manage synchronization of data access. 

 However, there are myriad systems to synchronize, and one cannot simply assume that 

databases will always be present to help us.  Several standards exist for addressing this 

problem across networked systems, the most commonly-used of which is the X/Open 

XA
2
 standard.  Such standards are often adopted by dedicated transaction management 

servers, operating system-provided transaction managers, and network protocols designed 

to support transactional integrity.  Again, an exhaustive discussion would be well beyond 

the scope of this paper.  We recommend Principles of Concurrent and Distributed 

Programming, 2ed
3
 for a theoretical overview of the requirements for distributed 

synchronization and a review of your system’s technical documentation for application-

specific support and details. 
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